The Conserved Kinases CDK-1, GSK-3, KIN-19, and MBK-2 Promote OMA-1 Destruction to Regulate the Oocyte-to-Embryo Transition in C. elegans
نویسندگان
چکیده
BACKGROUND At the onset of embryogenesis, key developmental regulators called determinants are activated asymmetrically to specify the body axes and tissue layers. In C. elegans, this process is regulated in part by a conserved family of CCCH-type zinc finger proteins that specify the fates of early embryonic cells. The asymmetric localization of these and other determinants is regulated in early embryos through motor-dependent physical translocation as well as selective proteolysis. RESULTS We show here that the CCCH-type zinc finger protein OMA-1 serves as a nexus for signals that regulate the transition from oogenesis to embryogenesis. While OMA-1 promotes oocyte maturation during meiosis, destruction of OMA-1 is needed during the first cell division for the initiation of ZIF-1-dependent proteolysis of cell-fate determinants. Mutations in four conserved protein kinase genes-mbk-2/Dyrk, kin-19/CK1alpha, gsk-3, and cdk-1/CDC2-cause stabilization of OMA-1 protein, and their phenotypes are partially suppressed by an oma-1 loss-of-function mutation. OMA-1 proteolysis also depends on Cyclin B3 and on a ZIF-1-independent CUL-2-based E3 ubiquitin ligase complex, as well as the CUL-2-interacting protein ZYG-11 and the Skp1-related proteins SKR-1 and SKR-2. CONCLUSIONS Our findings suggest that a CDK1/Cyclin B3-dependent activity links OMA-1 proteolysis to completion of the first cell cycle and support a model in which OMA-1 functions to prevent the premature activation of cell-fate determinants until after they are asymmetrically partitioned during the first mitosis.
منابع مشابه
DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans.
Oocyte maturation and fertilization initiates a dynamic and tightly regulated process in which a non-dividing oocyte is transformed into a rapidly dividing embryo. We have shown previously that two C. elegans CCCH zinc finger proteins, OMA-1 and OMA-2, have an essential and redundant function in oocyte maturation. Both OMA-1 and OMA-2 are expressed only in oocytes and 1-cell embryos, and need t...
متن کاملRegulation of MBK-2/DYRK by CDK-1 and the Pseudophosphatases EGG-4 and EGG-5 during the Oocyte-to-Embryo Transition
DYRKs are kinases that self-activate in vitro by autophosphorylation of a YTY motif in the kinase domain, but their regulation in vivo is not well understood. In C. elegans zygotes, MBK-2/DYRK phosphorylates oocyte proteins at the end of the meiotic divisions to promote the oocyte-to-embryo transition. Here we demonstrate that MBK-2 is under both positive and negative regulation during the tran...
متن کاملGlobal Transcriptional Repression in C. elegans Germline Precursors by Regulated Sequestration of TAF-4
In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocy...
متن کاملThe C. elegans DYRK Kinase MBK-2 Marks Oocyte Proteins for Degradation in Response to Meiotic Maturation
The oocyte-to-embryo transition transforms a differentiated germ cell into a totipotent zygote capable of somatic development. In C. elegans, several oocyte proteins, including the meiotic katanin subunit MEI-1 and the oocyte maturation protein OMA-1, must be degraded during this transition . Degradation of MEI-1 and OMA-1 requires the dual-specificity YAK-1-related (DYRK) kinase MBK-2 . Here, ...
متن کاملThe oocyte-to-embryo transition.
The oocyte-to-embryo transition refers to the process whereby a fully grown, relatively quiescent oocyte undergoes maturation, fertilization, and is converted into a developmentally active, mitotically dividing embryo, arguably one of the most dramatic transitions in biology. This transition occurs very rapidly in Caenorhabditis elegans, with fertilization of a new oocyte occurring every 23 min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 16 شماره
صفحات -
تاریخ انتشار 2006